[1] 唐婧娴, 龙瀛. 特大城市中心区街道空间品质的测度——以北京二三环和上海内环为例[J]. 规划师, 2017, 33(2): 68-73.
[2] 龙瀛, 周垠. 街道活力的量化评价及影响因素分析——以成都为例[J]. 新建筑, 2016(1): 52-57.
[3] 樊钧, 唐皓明, 叶宇. 人本尺度下的社区生活便利度测度——基于多源城市数据的精细化评估[J]. 新建筑, 2020(5): 10-15.
[4] EWING R, HANDY S. Measuring the unmeasurable: urban design qualities related to walkability[J]. Journal of urban design, 2009, 14(1): 65-84.
[5] MONTGOMERY J. Making a city: urbanity, vitality and urban design[J]. Journal of urban design, 1998, 3(1): 93-116.
[6] EWING R H, CLEMENTE O, NECKERMAN K M, et al. Measuring urban design: metrics for livable places[M]. Washington, DC: Island Press, 2013.
[7] GEHL J, KAEFER L J, REIGSTAD S. Close encounters with buildings[J]. Urban design international, 2006, 11(1): 29-47.
[8] EWING R, HANDY S, BROWNSON R C, et al. Identifying and measuring urban design qualities related to walkability[J]. Journal of physical activity and health, 2006, 3(supplement 1): S223-S240.
[9] HAMIDI S, MOAZZENI S. Examining the relationship between urban design qualities and walking behavior: empirical evidence from Dallas, TX[J]. Sustainability, 2019, 11(10): 2720.
[10] LóPEZ T G. Influence of the public-private border configuration on pedestrian behaviour: the case of the city of Madrid[D]. Spain: La Escuela Te ?cnica Superior de Arquitectura de Madrid, 2003.
[11] City of San Jose. Downtown design guidelines[R]. San Jose: Planning Division of San Jose, 2004.
[12] 陈泳, 赵杏花. 基于步行者视角的街道底层界面研究——以上海市淮海路为例[J]. 城市规划, 2014, 38(6): 24-31.
[13] JACOBS A B. Great streets[J]. ACCESS magazine, 1993, 1(3): 23-27.
[14] JACOBS J. The death and life of great American cities[M]. Vintage, 2016.
[15] 徐磊青, 康琦. 商业街的空间与界面特征对步行者停留活动的影响——以上海市南京西路为例[J]. 城市规划学刊, 2014(3): 104-111.
[16] 吴莞姝, 钮心毅. 建成环境功能多样性对街道活力的影响研究——以上海市南京西路为例[J]. 南方建筑, 2019(2): 81-86.
[17] 叶宇, 张昭希, 张啸虎, 等. 人本尺度的街道空间品质测度——结合街景数据和新分析技术的大规模、高精度评价框架[J]. 国际城市规划, 2019, 34(1): 18-27. DOI: 10.22217/upi.2018.490.
[18] YE Y, ZENG W, SHEN Q, et al. The visual quality of streets: a humancentred continuous measurement based on machine learning algorithms and street view images[J]. Environment and planning b: urban analytics and city science, 2019, 46(8): 1439-1457.
[19] MIDDEL A, LUKASCZYK J, ZAKRZEWSKI S, et al. Urban form and composition of street canyons: a human-centric big data and deep learning approach[J]. Landscape and urban planning, 2019, 183: 122-132.
[20] CAMPBELL A, BOTH A, SUN Q C. Detecting and mapping traffic signs from Google Street View images using deep learning and GIS[J]. Computers, environment and urban systems, 2019, 77: 101350.
[21] LIU L, SILVA E A, WU C, et al. A machine learning-based method for the large-scale evaluation of the qualities of the urban environment[J]. Computers, environment and urban systems, 2017, 65: 113-125.
[22] QUERCIA D, PESCE J P, ALMEIDA V, et al. Psychological Maps 2.0: A web gamification enterprise starting in London[C] // Proceedings of ACM Conference on World Wide Web (WWW), 2013: 1065-1076.
[23] QUERCIA D, SCHIFANELLA R, AIELLO L M. The shortest path to happiness: recommending beautiful, quiet, and happy routes in the city[C] // Proceedings of the 25th ACM conference on Hypertext and social media, 2014: 116-125.
[24] QUERCIA D, O’HARE N K, CRAMER H. Aesthetic capital: what makes London look beautiful, quiet, and happy?[C] // Proceedings of the 17th ACM conference on Computer supported cooperative work & social computing, 2014: 945-955.
[25] NAIK N, PHILIPOOM J, RASKAR R, et al. Streetscore-predicting the perceived safety of one million streetscapes[C] // Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 2014: 779-785.
[26] WANG R, LIU Y, LU Y, et al. Perceptions of built environment and health outcomes for older Chinese in Beijing: a big data approach with street view images and deep learning technique[J]. Computers, environment and urban systems, 2019, 78: 101386.
[27] CHEN L, LU Y, SHENG Q, et al. Estimating pedestrian volume using Street View images: a large-scale validation test[J]. Computers, environment and urban systems, 2020, 81: 101481.
[28] LAUMER D, LANG N, VAN DOORN N, et al. Geocoding of trees from street addresses and street-level images[J]. ISPRS journal of photogrammetry and remote sensing, 2020, 162: 125-136.
[29] YE Y, RICHARDS D, LU Y, et al. Measuring daily accessed street greenery: a human-scale approach for informing better urban planning practices[J]. Landscape and urban planning, 2019, 191: 103434.
[30] LI X. Examining the spatial distribution and temporal change of the green view index in New York City using Google Street View images and deep learning[J]. Environment and planning b: urban analytics and city science, 2021, 48(7): 2039-2054.
[31] GONG F Y, ZENG Z C, ZHANG F, et al. Mapping sky, tree, and building view factors of street canyons in a high-density urban environment[J]. Building and environment, 2018, 134: 155-167.
[32] TANG J, LONG Y. Measuring visual quality of street space and its temporal variation: methodology and its application in the Hutong area in Beijing[J]. Landscape and urban planning, 2019, 191: 103436.
[33] WANG R, LU Y, ZHANG J, et al. The relationship between visual enclosure for neighbourhood street walkability and elders' mental health in China:
using street view images[J]. Journal of transport & health, 2019, 13: 90-102.
[34] ORDONEZ V, BERG T L. Learning high-level judgments of urban perception[C] // European conference on computer vision. Springer, Cham, 2014: 494-510.
[35] SRIVASTAVA S, VARGAS MUNOZ J E, LOBRY S, et al. Fine-grained landuse characterization using ground-based pictures: a deep learning solution based on globally available data[J]. International journal of geographical information science, 2020, 34(6): 1117-1136.
[36] 扬·盖尔. 交往与空间[M]. 北京: 中国建筑工业出版社, 2002: 58.
[37] HURTIK P, MOLEK V, HULA J, et al. Poly-YOLO: higher speed, more precise detection and instance segmentation for YOLOv3[DB/OL]. arXiv: 2005.13243v2, 2020[2021-01-29]. https://arxiv.org/abs/2005.13243.
[38] WU M, ZENG W, FU C W. Floorlevel-net: recognizing floor-level lines with height-attention-guided multi-task learning[J]. IEEE transactions on image processing, 2021, 30: 6686-6699.
[39] 胡军, 张超, 陈平雁. 非参数双变量相关分析方法Spearman 和Kendall的Monte Carlo 模拟比较[J]. 中国卫生统计, 2008, 25(6): 590-591.